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New approaches are presented that use the measured natural frequencies and mode
shapes to update the analytical mass and stiffness matrices of a structure. By adding known
masses to the structure and measuring its new modes of vibration, we can utilize this
additional information to correct the mass matrix of the system, after which the stiffness
matrix can be updated by requiring it to satisfy the generalized eigenvalue problem
associated with the structure. Manipulating the unknown system matrices into vector forms,
the connectivity information can be easily implemented to preserve the physical
configuration of the structure, and to reduce the computational efforts required to correct
the system matrices. A comparison is made between the proposed updating schemes
introduced in this paper and other updating algorithms found in the literature, and drastic
improvements are observed. © 2000 Academic Press

1. INTRODUCTION

Highly accurate and detailed analytical models are required to analyze and predict the
dynamical behavior of complex structures. With the advent of digital computers, new
methods of analysis have been developed, especially in the method of finite elements. Once
the finite element model of a physical system is constructed, it is often validated by
comparing its analytical modes of vibration with the results of a model survey. If the model
survey and the analytical predictions are in subjective agreement, then more credence is
given to the analytical model, and it can be used with more confidence for future analysis. If
the correlation between the two is unsatisfactory, then the analyst has the options of
accepting the analysis, accepting the tests, modifying either or modifying both.

The lack of correlation between the analytical predictions and the experimental results
can be traced to either experimental or modelling errors, or a combination of both. When
performing vibration tests, many sources of errors may arise, including inexact equipment
calibration, excessive noise, equipment malfunction, misinterpretation of data, incorrect
transducer locations, etc. Analytical finite element models may also contain errors,
including inappropriate modelling assumptions, uncertainties in the material properties,
insufficient modelling details, typographical computer inputs, incorrect boundary
conditions, etc. Here we do not address the questions of improving testing methods or
improving analysis procedures. We assume the available measured natural frequencies
and mode shapes are exact. Thus, when the analytical predictions do not match the test
measurements, the finite element model must be corrected or updated such that the
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agreement between predictions and test results is improved. The updated model may then
be considered a better dynamical representation of the structure. The above process is
known as model updating.

In this paper, we will first summarize two commonly referenced updating algorithms
found in the literature. The underlying principles for each will be discussed, and the pros
and cons will be addressed. We will then propose new model updating schemes to adjust the
system mass and stiffness matrices from an incomplete set of measured modes, and discuss
the techniques needed to solve the resulting problems. Finally, a comparison will be made
between the various model updating algorithms.

2. MODEL UPDATING

In recent years many methods have been developed to improve the quality of the
analytical finite element models using test data. Detailed discussion of every approach is
beyond the scope of this paper, and interested readers are referred to the recent survey paper
by Mottershead and Friswell [1]. In this paper, we will only introduce two commonly
referenced model updating techniques.

In most updating algorithms, all the co-ordinates of a given normal mode must be
known. Due to physical limitations, time or cost constraints, however, the number of
measured co-ordinates is generally substantially less than the degrees of freedom of the
analytical model. Thus, before any updating algorithm is implemented, we first have to
expand the measured mode shapes to the same size as their analytical counterparts. Mode
shape or eigenvector expansion is a key feature in many model updating schemes. This
process is known as mode expansion. A detailed comparison of various mode expansion
methods can be found in reference [2]. Because mode shape expansion introduces errors in
all of the updating algorithms considered in this paper, we asume that all of the co-ordinates
can be measured. This allows us to compare the updating algorithms themselves and not
confound the resulting updates with errors introduced by mode expansion. Thus, the effects
of the incompleteness of the measured co-ordinates will not be addressed here, and the
effects of the various mode expansion algorithms on the quality of the updates will not be
pursued. Finally, in the subsequent analysis, the mass and stiffness matrices of the actual
and analytical systems are all symmetric.

2.1. LAGRANGE MULTIPLIERS APPROACH

Berman [3] developed a method that uses the measured mode shapes to correct the mass
matrix of a structure. This updating scheme identifies, without iteration, a set of minimum
changes in the analytical mass matrix such that the measured modes are orthogonal to the
updated mass matrix of the system. Using the Lagrange multipliers formalism to optimally
correct the mass matrix subjected to the orthogonality constraint, he derived an expansion
for the updated mass matrix, [M], of size N x N (where N corresponds to the degrees of
freedom of the analytical model), as follows:

[M] =[Mo] + [Mo][X1[m]™ "(L1] — [m])[m] ™' [X]"[M,], (M

where [M,] is the analytical mass matrix, [I] is the identify matrix, [X] is the
experimentally determined rectangular modal matrix, of size N x N,, where N, is the
number of measured modes, and

[m] = [X1" [Mo1[X]. 2
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Matrices [I] and [m] are both of sizes N, x N,. For an incomplete set of measured modes,
N, < N.

Using essentially the method first introduced by Baruch and Bar Itzhack [4], Wei [5]
developed an optimal method to update the stiffness matrix of a structure. He also
employed the Lagrange multipliers formalism to update the stiffness matrix subjected to the
constraints of satisfying the generalized eigenvalue problem, the orthogonality condition of
the measured mode shapes and the symmetry property of the stiffness matrix. He found the
updated stiffness matrix [ K], to be given by

[K] = [Ko] + ([4] +(41"), )

where

[4] =3 [MIIXT(XT [Kol[X] + [ADIXT'[M] — [Ko][X1[X]"[M]. 4)

Matrix [ K] is the analytical stiffness matrix, and matrix [A4] is a diagonal matrix whose
elements are the measured eigenvalues (natural frequencies squared) of the system. While
the Lagrange multipliers formalism updates the system stiffness and mass matrices without
iteration, the resulting updated matrices are fully populated, implying that the updated
model may introduce masses and load paths that do not physically exist. Thus, certain
off-diagonal terms of these matrices are fictitious, and they are artifacts of the updating
scheme. Moreover, the resulting updated matrices may suffer a loss of positive difiniteness
during the updating process, and the updated model may generate spurious modes in the
frequency range of interest [1].

The Lagrange multipliers approach to update the system matrices return fully populated
mass and stiffness matrices that bear little resemblance to the physical system being
analyzed. To preserve the physical load paths of the original analytical model, Kabe [6]
assumed the analytical mass matrix to be correct and incorporated the structural
connectivity information, which is generally well known, in addition to the test data to
optimally adjust the stiffness matrix. The adjustments he performed are such that zero and
non-zero elements of the analytical model are preserved, and the adjusted model exactly
reproduces the models used in the identification. He also utilized a Lagrange multipliers
formalism, so that the percentage change to each stiffness element is minimized. While
Kabe’s approach to updating the stiffness matrix is straightforward, the assumption that the
actual mass matrix is identical to the analytical mass matrix remains questionable [7].
Moreover, Kabe’s approach is limited by the storage required and is very computational
intensive, since in order to update the stiffness matrix, a large standard eigenvalue problem
of size NN, x NN, needs to be solved [6].

2.2. PERTURBATION APPROACH

Using an approach based on the matrix perturbation theory, Chen et al. [8] found the
updated mass matrix to be

[M] = [Mo] + [Mo][Xo][I] — [Xo]" [Mo][X] — [XT'[Mo1[XoD[Xo] [Mo], (5)
where [ X ] is the normalized modal matrix such that
[Xo]" [Mo1[Xo] = [1] (6)

and [X] is the measured modal matrix. Matrices [ Xy] and [ X] are both of size N x N,.
Using the same technique, Chen et al. [8] also derived the following expression for the
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updated stiffness matrix:
[K] = [Ko] + [Mo][Xo]2[w3] + 2[we][dw] — [Xo]" [Ko][X]
— [XT"[Ko][XoD[Xo]" [Mo], ()

where [wo] is diagonal matrix whose elements are the analytical natural frequencies
associated with [ K] and [M,], and [dw] is a diagonal matrix whose elements correspond
to the differences between the measured and the analytical natural frequencies.

While straightforward, the perturbation approach of updating the mass and stiffness
matrices processes certain shortcomings. Like the schemes proposed by Berman and Wei,
equations (5) and (7) also result in fully populated mass and stiffness matrices, thus failing to
preserve the physical connectivity of the system. Moreover, because their method is based
on the matrix perturbation theory whereby the second and higher order terms are ignored,
the algorithm can only be applied when the analytical and the actual system matrices are
close. When the system matrices deviate substantially from one another, the approach
introduced in reference [8] leads to an erroneous updated model due to the truncation of
higher order terms. Finally, the derivation carried out by Chen et al. requires that the
measured model [ X, satisfy

[XT'[MI[X]1=[1], [X]'[KI[X]=[A]. )

Because the objective of model updating is to correct the system mass and stiffness matrices
[M] and [K] are not known a priori. Thus, the necessary orthogonality constraints cannot
be enforced, and their proposed model updating approach based on the perturbation theory
cannot be utilized in practice.

2.3. PROPOSED MODEL UPDATING ALGORITHM

We will now introduce an alternative model updating technique that is simple to apply
and can easily accommodate the connectivity information, which is assumed to be readily
available and well known, to preserve the physical configuration of the system. The modes
of vibration of the actual system must satisfy the generalized eigenvalue problem

[K]1[X] = [M][X][4], ©

where [M] and [K] are the actual system matrices (both of sizes N x N), [X] is the
measured modal matrix (of size N x N,) of the system, and [ 4] is a diagonal matrix (of size
N, x N,) whose elements are the measured eigenvalues of the system. Assuming the matrices
[M] and [K] can be expressed as

[M] =[M,] + [oM],  [K]=[Ko]+ [0K], (10)

where [0M] and [0K] represent the mass and stiffness correction matrices, respectively,
then equation (9) becomes

([Ko] + [OKDL[X] = ([Mo] + [6M][X][A]. (11)

Premultiplying the above equation by [ X]" and expanding the resulting matrix equation,
we get the following matrix equation of size N, x N,:

[A7] + [XT'[6KI[X] = ([I'] + [X]'[OM][X])[], (12)
where

[47=[XT"[KoI[X],  [I']=[X]"[Mo][X]. (13)
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In general, neither the analytical mass matrix nor the analytical stiffness matrix will be
exact. Thus, [0M] # [0] and [0K] # [0]. For a given set of measured modes, an infinite
number of [6M] and [§K] combination may satisfy equation (12). To introduce another set
of matrix equation, we first attach known masses to the system of interest, at locations
coincident with the nodal points of the finite element model in order to preserve the size of
the initial analytical system, and then measure the modes of vibration of this newly
constructed mass-modified system. In conjunction with the original set of experimental data
we can readily update the mass matrix of the structure.

The measured modes of the actual system must satisfy equation (9). We now add a known
mass matrix [ M,], to the system so that the new system satisfies the generalized eigenvalue
problem

[K1[X.] = ([M] + [M.])[Xa][4a], (14)

where [ X, ] corresponds to the N x N, modal matrix of the new system, and [ 4,] consists of
a diagonal matrix, of size N, x N,, whose elements are the eigenvalues of the new system.
The stiffness matrix of this mass-modified system is assumed to remain unchanged from the
initial structure. Taking the transpose of equation (9) and postmultiplying the resultant
matrix equation by [ X,], we get

[XT'[KI[X.] = [A1[XT' [M][X,]. (15)
Premultiplying equation (14) by [X]", we have
[XT'[KI[X.] = [XT"(IM] + [MD)[X[A]- (16)
Equating the right-hand sides of equations (15) and (16), we obtain
[AILXT IMI[X.] = [XT"([M] + [M D)X (4] (17)
or
[AILXT IMILX,] — [XT' [MI[X1[A4] = [X] [MJ[X ][4 (18)
Defining
[P]=[XT"[MI[X.], (19)
then equation (18) becomes
[A]1[P] — [P][4.] = [Q], (20)
where
[0] = [XT' [MJ[X.I[A.]. (21)
The (i, j)th element of equation (20) yields
(Zi — Aaj) Pij = Q) (22)
where /,; is the jth measured eigenvalue of the mass-modified system, and i,j =1, ..., N,.

Assuming that the N, measured eigenvalues of the original and the mass-modified systems
are distinct, then we can solve for all the unknowns P;; and construct the matrix [P].
Finally, masses of any magnitude can be added as long as the resulting mass-modified
system and the initial structure have distinct measured eigenvalues, i.e., 4; # 4,;. Numerical
simulations indicate that (1) the added masses can be an order of magnitude smaller than
the actual masses, and (2) the required number of added masses is only a fraction of the size
of the analytical model. Thus, the assumption that added masses will not significantly affect



592 P. D. CHA AND W. GU

the stiffness of the initial physical structure is valid, and the proposed updating scheme
shows promise in actual application.
Equation (19) can also be written as

[XT[OM][X,] = [P] - [XT'[M,][X.]. (23)

Because [ X] and [X,] are both rectangular matrices (assuming N, < N), they have no
inverses. However, equation (23) can be expanded such that [0 M] appears as an unknown
column vector dm as follows:

[A]om =T, (24)
where
om = [6myq -+ dmyy|Omyy - Imyy| -+ | Smyy -+~ Smyy]" (25)
and
r="[ri v ran o v v (26)

In equation (25), om;; corresponds to the (i, j)th element of [6M]. Matrix [A] is of size
NZ x N? whose elements can be determined by expanding the left-hand side of equation
(23), vector r is of length N2, whose components can be obtained by expanding the
right-hand side of equation (23).

When N, = N, we have as many equations as we do unknowns, and equation (24) can be
solved exactly by using simple Gauss elimination. When N, < N, equation (24) results in an
underdetermined problem (that is, the number of equations is less than the number of
unknowns), which typically has an infinite number of solutions [9]. In this case, we seek
a solution vector dm such that the Euclidean norm of the residual vector |[[A]dm — r|| is
minimized. The resultant solution is referred to as the least-squares solution to equation
(24). If the least-squares problem has more than one solution, the one having the minimum
Euclidean norm is called the minimum-norm solution. Because the analytical and the actual
mass matrices are presumed to be close, then if dm has an infinite number of solutions, the
minimum-norm solution dm will be used to update the analytical mass matrix.

At first glance it appears that one needs to solve an underdetermined, least-squares
problem of size N2 x N? (assuming N, < N) in order to update the mass matrix of the
system. However, the optimal matrix storage scheme commonly used in finite elements [10]
can be utilized to pass along the sparsity information, thereby imposing the condition that
all the zero elements in the analytical mass matrix remain zeros in the adjusted mass matrix
to drastically reduce the size of the problem to be solved. Mathematically, this can be
achieved by eliminating all the zero elements from ém and by deleting all the corresponding
columns in [A]. For example, if the actual mass matrix of the system is known to be
diagonal, then om;; = O for i # j, and equation (24) reduces to

[A]om =r, (27)
where
6m/ == [5"’111 5m22 5mNN]T. (28)

Thus, the initial N2 x N? underdetermined, least-squares problem is reduced to one of size
N2 x N. The resulting least-squares problem will be either overdetermined (that is, the
number of equations is greater than the number of unknowns) or underdetermined,
depending on whether N2 > N or N2 < N respectively. For most physical systems, the
number of measured modes will generally be substantially less than the size of the analytical
model, and the problem will be underdetermined.
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Once the mass matrix has been corrected, then equation (12) can be used to update the
stiffness matrix as

[XT'[OKI[X] = ([I'] + [X]"[eMI[XN[A] — [4]. (29)

Equation (29) can also be expanded so that [§K] appears as an unknown column vector,
leading to yet another underdetermined, least-squares problem of the form

[B] ok = h. (30)

Enforcing the connectivity information of the stiffness matrix, we can drastically reduce the
size of the least-squares problem to be solved. For example, if the stiffness matrix of the
system is known to be tri-diagonal, then dk;; = O for |i — j| > 1, and equation (30) reduces to

[B']0k" =h, (31)
where [B'] is obtained from [ B] by deleting all the appropriate columns and
Ok’ = [Okyy Okyy|Okyy Okay Okas| -+ |Skyy—1 Okyy]". (32)

Thus, the initial N2 x N? underdetermined, least-squares problem is reduced to one of size
NZx(3N —2).

Finally, a few words about the connectivity information are warranted. Because the basis
of model updating is the analytical model, the analytical model itself must reflect the actual
system to a certain degree. Here, we assume that the analytical model and the actual system
share the same sparsity pattern. The structural mass and stiffness parameters of the
analytical and actual systems, however, may differ substantially. For systems whose
connectivity information is now well known, we can use engineering judgement to estimate
the zero and non-zero patterns in the mass and stiffness matrices, and delete the appropriate
elements from the mass and stiffness correction vectors in the solution of the least-squares
problem. Terms that we think might be non-zero are included in the analysis. Using an
iterative scheme, we can isolate the non-zero mass and stiffness correction terms.
Preliminary numerical simulations suggest that convergence to the correct sparsity pattern
is usually achieved within a few iterations even for a limited number of measured modes.
How to apply the updating scheme iteratively to correct the system parameters will be
addressed in a future paper.

3. RESULTS

We now apply the various model updating algorithms to the simple system of Figure 1,
whose mass matrix is diagonal and whose stiffness matrix is symmetric and tri-diagonal.

\\\\\%\\\\\

Figure 1. Simple chain of coupled oscillators.
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TaBLE 1

The actual and the updated masses (kg), obtained by using the Lagrange

multipliers formalism [3], the perturbation approach [8], and the

proposed (new) mass updating scheme, for N,= N =16. The
analytical masses are 2-000 kg

m m m

actual mLugrange perturbation new
my; = 201278 1-73342 2:66997 2:01295
m, = 2-54431 2-17979 3-11584 2:54459
my = 2-:50904 2-16914 3-:51100 2-50919
m, = 2-82288 2-42666 3-19962 2-82293
ms = 2:64104 2-:29568 3-45863 2-64105
me = 1:97303 175149 3-48676 1-97304
m, = 2-55730 2-19251 3-77886 2-55730
mg = 2-32015 2-:05055 3:97162 2:32016
my = 2:63741 2-:51566 446901 2:63741
my, = 1:29419 1-49824 3-23780 129418
my, = 2:18310 219574 292685 2-18311
my, = 1:31170 141313 2-45586 1-:31170
my; = 2:65806 2-38878 297832 2-65806
my, = 2:43710 2-28836 3-:01630 2-43710
mys = 176514 1-76796 294783 1-76514
m; ¢ = 2:85021 2-:50437 2-94283 2-85022

The analytical masses and stiffnesses are 2:000 kg and 5-000 N/m, respectively. The primary
objective here is to compare the results of the proposed algorithm with the Lagrange
multipliers formalism and the perturbation scheme. Thus, such a simple system is sufficient.
Knowing the modes of vibration of the analytical model and the actual system, we aim to
correct the analytical system matrices.

Finally, when solving a least-square problem, the CMLIB routine sglss was accessed,
which is specialized to handle both underdetermined and overdetermined systems
[A]x = b, where [ A] is an m x n matrix and b is a vector of length m. When the system is
overdetermined (m > n), the least-square solution is computed by decomposing the matrix
[A] into the product of an orthogonal matrix [Q] and an upper triangular matrix [R] (QR
fractorization). When the system is underdetermined (m < n), the minimal length solution is
computed by factoring the matrix [4] into the product of a lower triangular matrix [L] and
an orthogonal matrix [Q] (LQ factorization). If the matrix [ 4] is determined to be rank
deficient, that is the rank of [ A] is less than min(m, n), then the minimal length least-squares
solution is computed.

Table 1 shows the actual and the updated mass parameters for the system of Figure 1,
with N = 16 and N, = 16. To perform the mass updating algorithm, three lumped masses of
magnitude 0-200 kg are added to masses 5, 10 and 15. Note that the added masses are an
order of magnitude smaller than the nominal analytical masses. The Lagrange multipliers
formalism of equation (1) return 11 masses that deviate by over 10-00% from their actual
values. Because the deviations between the actual and the analytical masses are large, the
perturbation approach fails and equation (5) returns 13 masses that deviate by over 20-00%
from their actual values. The proposed mass updating algorithm of equation (24) is by far
the best. In fact, it corrects all the masses to within 0-01% of their actual values. Finally, of
the three mass updating schemes, only the proposed algorithm returns a mass matrix that is
strictly diagonal (the Lagrange multipliers method and the perturbation approach return
fully populated mass matrices, though it should be noted that the off-diagonal terms are at
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TABLE 2

The actual and the updated stiffnesses (N/m), obtained by using the

Lagrange multipliers formalism [ 5], the perturbation approach [ 8], and

the proposed (new) stiffness updating scheme, for N, = N = 16. The
analytical stiffness are 5000 N/m

actual kLagrunge kperturbation knew
ky =413999 3-:60478 4-70009 4-14024
k, = 6:88016 5-87737 9-86087 6-88082
ks = 560515 470799 11-4754 5-60563
k, = 651076 5:66840 13-0297 6-:51102
ks = 293431 2-57516 10-0978 293434
ke = 713261 6-54563 156957 7-13263
k, = 330715 296001 14-6169 3-:30716
kg = 329861 2:95419 15-5731 3-29862
ko = 620207 6-:38906 15-0097 6:20207
kio = 663989 9-21278 14-4228 6:63989
ki, = 594890 805651 7-27202 5-94891
ki, = 632030 8:26645 9-89750 6-32030
ki3 = 333570 420197 6:56427 3-33570
ki, = 598769 6-20317 7-57026 598770
kis = 549729 661043 9-70472 5-49729
kie = 594830 6:19617 9-42443 5-94830

least one order of magnitude less than the diagonal components), because it is the only
procedure that allows the connectivity information to be easily enforced.

Table 2 displays the updated stiffness parameters. By inspection, note that the
perturbation approach of updating the stiffness values (see equation (7)) is the worst,
resulting in 8 stiffness that deviate by over 100-00% from their actual values. The Lagrange
multipliers formalism is also unacceptable, returning 5 stiffness parameters that deviate by
over 20-00% from their actual values. The proposed method of updating the stiffnesses (see
equation (30)), on the other hand, returns stiffness values that are all with 0-01% of the
actual stiffness. Moreover, while the Lagrange multipliers method and the perturbation
approach lead to full stiffness matrices, the new stiffness updating scheme returns
a tri-diagonal stiffness matrix, thus preserving the physical load paths of the analytical
system.

Table 3 shows the eigenvalues (the square of the natural frequencies) of the system
obtained by using the three distinct model updating methods. The original analytical
eigenvalues are also listed for comparison. Note that the Lagrange multipliers formalism
leads to updated eigenvalues that are identical to those obtained experimentally, even
though the resulting mass and stiffness matrices deviate substantially from the exact (see
Tables 1 and 2). This is, however, not surprising, because the experimental eigendata are
used as constraints that are explicitly satisfied in the updating algorithm [5]. The
perturbation scheme leads to an updated model whose eigenvalues are all within 11-28% of
the exact values, despite the large deviations in the updated masses and stiffnesses from the
actual values. Finally, the proposed algorithm leads to an updated model whose eigenvalues
are all with 0-01% of the measured data.

We now consider the more realistic case where the test data is incomplete. Specifically, we
consider the case of N, =4, i.e., only the first 4 modes of vibrations can be measured.
Table 4 shows the adjusted mass parameters obtained by using the various updating
methods. By inspection, while the Lagrange multipliers approach and the perturbation
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TABLE 3

The analytical, actual and the updated eigenvalues (1/s?), obtained by using the Lagrange
multipliers formalism [3,5], the perturbation approach [8], and the proposed (new)
mass/stiffness updating schemes, for N, = N = 16

)"analyticul /luctual ;“Lagrange ;“perturbution j'new
Ay = 002264 0-01950 0-01950 0-01808 0-01950
A, = 020254 0-17220 0-17220 0-16526 0-17220
Az = 0-55582 0-43171 0-43171 0-41017 0-43170
Ay = 106973 0-92643 0-92643 0-82198 0-92642
As = 1:72570 1-41718 1-41718 1-48868 1-41718
e = 2-50000 2-13323 2-13323 2:09934 2-13323
A7 = 3-36466 2-:69188 2:69188 277164 2-:69188
g = 428843 328285 3-28285 3-60767 3-28285
Ao = 523791 521935 5:21935 5-20351 5:21935
Ao = 617879 6-21042 6-21042 622527 621042
Ay = 707708 6-35818 6-35818 676697 6-:35818
A1, = 790028 8-12766 8:12766 808535 812767
A1z = 861867 9-06829 9-06829 8:92026 9-06829
Ara = 920627 9-19906 9-19906 9:65551 9-19906
A5 =9-64184 9-:87109 9-87109 10-8315 9-:87109

A1e = 9:90964 13-5781 13-5781 14-2722 13-5781

TABLE 4

The actual and the updated masses (kg), obtained by using the Lagrange

multipliers formalism [3], the perturbation approach [8], and the

proposed (new) mass updating scheme, for N,=4. The analytical
masses are 2-000 kg

Myctual mLagrange mperturbatian Moy
m; = 201278 2:02300 2:04672 2:42061
m, = 2-54431 2-:04685 2-13077 2:25814
my = 2:50904 2:05725 2:15938 2:58772
m, = 2-82288 2-:04467 2-12269 2-:81276
ms = 2:64104 2:01050 2:09176 2:63390
me = 197303 2-:01187 2-10848 1-98473
m, = 2:55730 2:01693 2:13097 2-54469
mg = 2-:32015 1-98706 2-10563 2:33686
my = 2:63741 196165 2:04907 2:62558
my, = 1:29419 1-94682 2-:01949 1-29676
my, = 218310 1:94086 203112 218014
my, = 1:31170 1-95412 2-:04514 1-31533
m; 3 = 2:65806 199045 2:04359 2:65673
my, = 2:43710 2-:01084 2:06182 2-43810
m;s = 176514 2:02694 2-12485 176388
my = 2:85021 2-03523 2-18928 2-85090

method return updated masses that are merely perturbations of the analytical masses, the
proposed algorithm (see equation (24)) yields updated masses that are much closer to the
actual values than either of the other two schemes. In fact, except for the first two masses,
the proposed approach returns masses that are all within 3-14% of the exact values, despite
the fact that only a fourth of the total modes are used to perform the update.
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TABLE 5

The actual and the updated stiffnesses (N/m), obtained by using the Lagrange multipliers
formalism [ 5], the perturbation approach [8], and the proposed (new) stiffness updating
scheme, and the hybrid approach, for N, = 4. The analytical stiffness are 5000 N/m

kuctual kLagrunge kperturbation knew khybrid
k, = 413999 4-:54229 5-01397 446771 497859
k, = 6:88016 5-13440 4-99187 5:30249 827362
ky = 560515 475973 4-99386 5:30779 546921
k, = 6:51076 5:39377 5-00787 497209 6:51719
ks = 2-93431 4-:32750 5-00977 3-18452 2-93377
ke = 7-13261 5-49889 4-98627 595659 7-13899
k, = 330715 5-00384 496212 3-72830 3-:30643
kg = 3-29861 4-80610 4-96976 401147 3-29345
ko = 620207 5:12207 5:00125 5:37398 6:19543
ki, = 663989 495199 5-01509 541229 6:63673
ki, = 594890 4-86396 499283 496171 5-94447
ki, = 632030 507264 4-96483 469794 6-31748
ki3 = 333570 479146 496716 5-05936 3-33579
ki, = 598769 5:16347 4-99206 5-12066 598729
ks = 549729 4-94268 5:00286 5:16572 5:49695
kie = 594830 495825 4-98885 495487 5-94949
TABLE 6

The analytical, actual and the updated eigenvalues (1/s?), obtained by using the Lagrange
multipliers formalism [3,5], the perturbation approach [8], and the proposed (new)
mass/stiffness updating schemes, and the hybrid approach, for N, = 4

;“actuul )”Laynmge /lperturbation ;{new /‘Lhybrid
Ay = 001950 0-01950 0-01945 0-09542 0-01985
Ay = 017220 0-17220 0-17514 0-13407 0-17223
Ay = 043171 043171 0-44122 0-35350 0-43170
A4 = 092643 092643 0-96532 0-80168 092632
As = 141718 1-65880 1-72570 1-26314 1-41620
Je = 2-13323 2-49296 2-:50000 2-24535 2-13047
Ay =2-69188 333621 3-36466 2:71693 2:66496
Ly = 3-28285 426473 4-28843 3-45927 3-27800
Ao = 521935 5-23740 523791 4-51129 521657
Ao = 621042 6-15514 6-17879 5-02477 6-18390
Ayp = 635818 7-05988 7-07708 597026 6-33734
A1, = 812766 7-87660 7-90028 7-21494 8-13369
A1z = 9-06829 8:59786 8:61867 7-53572 9-19861
Ara = 9:19906 920411 9-20627 8-:09895 9-85985
Ars = 9-87109 9-59884 9-64184 9-44835 9-86910

Ae = 13-5781 9-87893 9-90964 113674 13-5623

Table 5 displays the updated stiffness parameters. By inspection, no approach performs
any better than the others. Table 6 shows the eigenvalues of the updated models. Not
surprisingly, because the first four measured modes of vibration are used as constraints [5],
the Lagrange multipliers formalism exactly reproduces the first four eigenvalues of the
actual system. Interestingly, except for the first four updated eigenvalues, the updated



598 P. D. CHA AND W. GU

eigenvalues obtained by the perturbation approach are all identical to those of the
analytical system. Because the proposed stiffness updating algorithm returns adjusted
stiffnesses that deviate substantially from the actual stiffnesses, the agreement between the
actual and the resulting eigenvalues obtained by the proposed mass/stiffness updating
scheme is poor. Finally, the previous examples reveal that the accuracy of all the updating
algorithms depends on the number of measured modes, N,, that are available for analysis.
The more experimental data one uses in the updating algorithm the more accurate the
updated model becomes.

From various numerical experiments, the proposed mass updating scheme returns a mass
matrix that closely resembles the actual system mass matrix, even for a limited number of
measured modes. Unfortunately, none of the stiffness updating algorithms used thus far can
correct the stiffness matrix to the same level of accuracy when N, is small. To remedy the
situation, we turn to Kabe’s approach [6], which assumes the mass matrix to be known.
Thus, we apply the following hybrid approach: we first update the system mass matrix using
the added mass approach; we then apply Kabe’s procedure which preserves the physical
connectivity of the system to update the stiffness matrix. In essence, we harness the
advantages of the mass updating algorithm introduced in this paper and Kabe’s approach
of correcting the stiffness matrix. Table 5 also shows the updated stiffness parameters
obtained by using this hybrid scheme. Note that except for the first three stiffness
parameters, the remaining updated stiffnesses are all within 0-16% of the actual stiffness
values (the third updated stiffness is within 2:45% of the actual value). Table 6 also includes
the updated eigenvalues obtained by the hybrid approach. Note how well they track the
measured data (except for 44, the remaining updated eigenvalues are all with 1-45% of the
measured eigenvalues), despite the fact that only for measured modes of vibration are used
to update the system mass and stiffness matrices. Because Kabe’s algorithm is very
computationally intensive, a trade-off has to be made regarding accuracy versus
computational efficiency.

We now turn our attention to the modal matrices obtained by the various updating
techniques. Given any two modal matrices, some terms in one modal matrix are closer to
the exact values than the other while other terms are farther. Thus, it is difficult to pass
judgement on which updating algorithm leads to a more accurate solution by simple
inspection of the modal matrices. It is common practice to check for the correctness of the
modal matrix by resorting to be orthogonality characteristics of the normal modes. If the
modal matrix [X7], is exact and properly normalized, then it is orthogonal with respect to
the actual mass matrix [ M], such that

[XT'IMI[X] = [1], (33)

where [I] is the identity. Because the updated modal matrices are approximate, performing
the above triple product yields

[X.]'[MI[X.] = [L]. (34)

where [X,] is the updated modal matrix, normalized such that the diagonal elements of
equation (34) are identically one, and [I,] is a full matrix. Because the updated modal
matrices are not orthogonal with respect to [ M ], the average magnitude of the off-diagonal
terms of equation (34) can be used to describe the accuracy of the modal matrices
quantitatively. Table 7 shows the average magnitudes of the off-diagonal terms of equation
(34). When the set of the measured modes is complete (N, = N = 16), the Lagrange
multipliers scheme and the proposed mass/stiffness algorithm return modal matrices that
are exact. For N, = 4, the proposed mass/stiffness updating method yields a modal matrix
that is closer to the exact than either the Lagrange multipliers formalism or the perturbation
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TABLE 7

The average magnitude of the off-diagonal terms of equa-
tion (34). If the modal matrix is exact, then the average is
identically zero

Approach (N,) Average
Lagrange multipliers (16) 0-00000
Perturbation (16) 0-05276
Proposed mass/stiffness (16) 0-00000
Lagrange multipliers (4) 0-04235
Perturbration (4) 0-04302
Proposed mass/stiffness (4) 0-00719
Hybrid (4) 0-00063

method. The hybrid updating scheme (which consists of the proposed mass updating
algorithm and Kabe’s approach) returns a modal matrix that is even better than the
proposed mass/stiffness updating algorithm.

Finally, only natural frequencies and mode shapes are used here to correct the system
mass and stiffness matrices. While the Lagrange multipliers formalism leads to an updated
model whose analytical eigendata coincide exactly with those obtained experimentally (for
N, = N), it yields a model whose system parameters may deviate substantially from the
actual values (see Tables 1 and 2). Thus, the ability to duplicate the free response
characteristics may be insufficient to guarantee the updated model to be useful or accurate.
To improve our confidence level in the modified analytical model, more information may be
required in the updating scheme, including using multiple boundary conditions [11] or
using anti-resonance data [12] to increase the available experimental data. In essence, the
more constraints the updated model can satisfy, the more accurate it is in describing the
actual system.

4. CONCLUSION

New mass and stiffness updating algorithms were presented. Because of their simplicity,
the known connectivity information can be easily imposed, thus preserving the physical
configuration of the analytical model and reducing the amount of computational efforts
required to correct the analytical system matrices. When the set of measured data is
complete, the newly developed model updating schemes return mass and stiffness matrices
that are exact. When the set of experimental modes is incomplete, the proposed mass
updating algorithm still yields a mass matrix that is nearly correct. In conjunction with
Kabe’s stiffness updating formalism, which assumes the mass matrix to be known, a hybrid
approach is introduced that can be used to accurately update finite element models with
limited experimental data. While the proposed updating scheme requires more work and
cause testing down-time, the additional time and effort are a relatively small price to pay for
the ability to correct the analytical model.
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